
GSoC 2022 PostgreSQL Project Proposal
Improve PostgreSQL Regression Test Coverage

1. Basic Information

● Name: DongWook Lee

● Email: sh95119@gmail.com

● Location: Seoul, South Korea (UTC+ 09:00)

● LinkedIn: https://www.linkedin.com/in/michael--lee96/

● Tech Blog: https://dongwooklee96.github.io/

● Github: https://github.com/dongwooklee96

● Available time: (6 pm - 12 pm)

2. About me

I’m DongWook Lee, a 27-years-old who is interested in database management systems.
It’s been a year since I graduated in computer science. I have been interested in
databases since I was a student, and these interests remain the same today. I was
interested in database internal, but now I’m focusing more on the aspects that I use well.

I’m currently working at CRScube which deals with clinical management as a web
application developer. I usually use Flask to develop the backend, and sometimes use
React.js to make the front-end and I often use PostgreSQL and MariaDB to store data. I
prefer PostgreSQL because that has various extensions and communities to solve
problems.

I’m familiar with C, Python, and Java and I’ve learned even Perl, but I’m not that used to
it and forgot a lot. However I think Python and Pearl have a lot in common (internal
philosophy is quite different.), and I can get accustomed to them quickly. and also I’m
used to working in a Linux environment and I can use tools like Vim, GDB, strace, perf.

Over the past year, I’ve had almost constant time off work, therefore I can participate in
the project steadily.

mailto:sh95119@gmail.com
https://www.linkedin.com/in/michael--lee96/
https://dongwooklee96.github.io/
https://github.com/dongwooklee96

after work, I usually read books or write technical blogs in my free time. If I participate
in GSoC and get used to writing test codes I think it will be my new hobby. And it would
be a pleasure to add test codes written by others or to review the test codes written by
others.

3. Why this project is important to me

I had a lot of interest in databases before, and I also wanted to contribute to open-source
projects. Therefore, I tried to contribute and contributed several times.

● PostgreSQL - Add some basic regression tests for pg_freespacemap
● PostgreSQL - Improve references to term “FSM” in pageinspect and

pgfreespacemap
● PostgreSQL - pg_stat_statements: Remove unnecessary call to GetUserId()
● PostgreSQL - Add link from pg_dump –encoding to supported encodings
● PostgreSQL - Add more TAP tests for pg_dump options with range checks
● Arcus - ENHANCE: optimize do_item_replace()

But what I could only contribute to was so basic or simple things. So, I applied to GSoC
2022 to have the ability to contribute one step further and it’s very interesting to have a
lot of colleagues with common interests. In addition, working with a mentor who can
help me is very good.

Writing test code is like understanding the internal logic of the application. It’s very
important to me because I want to study PostgreSQL’s internal movements deeply.

Many functions are newly developed and modified, So I want to make PostgreSQL a
more stable DBMS by creating a test code. Furthermore, I hope to help many people
using PostgreSQL.

https://github.com/postgres/postgres/commit/a1bc4d3590b1f620485c3ec5290dc628e62476f8
https://github.com/postgres/postgres/commit/7687ca996e558d95e68d2d0d70fed22a6317ba78
https://github.com/postgres/postgres/commit/7687ca996e558d95e68d2d0d70fed22a6317ba78
https://github.com/postgres/postgres/commit/667726fbe50f21d7d3ce5d5c5949a45c2496b60f
https://github.com/postgres/postgres/commit/64fe120b57c6a928a527880476e9882b9bf7ae8a
https://github.com/postgres/postgres/commit/64725728e790b76c97984b1029d9ffe90bcb2ec4
https://github.com/naver/arcus-memcached/pull/508

4. Project Abstract

PostgreSQL is a very actively developed project and there are so many existing codes
and so many new ones are added. I think there are still many functions that have not
been tested. Test codes that various cases increase development stability and other
developers can make changes safely. I will write a test code for the module that has not
been tested yet.

5. Features To be implemented

These are ideas that I want to do on a project.

● Write test codes for untested parts

When I checked the current test coverage, many modules are not covered. Therefore,
first of all, I will write a test focusing on the parts that are not covered.

First, I will write a test for a module that has not been tested at all. When I checked the
coverage, many extensions remained untested. So I will focus on writing test codes to
increase test coverage.

● List of modules to test

I made a list of modules to be tested based on modules with personal interest and less
test coverage.

module description document

pg_dump extract a PostgreSQL
database into a script file

or other archive file

https://www.postgresql.or
g/docs/devel/app-pgdum

p.html

psql PostgreSQL interactive
terminal

https://www.postgresql.or
g/docs/devel/app-psql.ht

ml

pg_ctl initialize, start, stop, or
control a PostgreSQL

server

https://www.postgresql.or
g/docs/devel/app-pg-ctl.h

tml

initdb create a new PostgreSQL
database cluster

https://www.postgresql.or
g/docs/devel/app-initdb.h

tml

pg_stat_statments It’s for tracking planning
and execution statistics of

all SQL statements
executed by a server.

https://www.postgresql.or
g/docs/devel/pgstatstate

ments.html

pg_buffercache It’s for examining what’s
happening in the shared
buffer cache in real-time.

https://www.postgresql.or
g/docs/devel/pgbuffercac

he.html

pg_prewarm It provides a convenient
way to load realation data
into either the operating

system buffer cache or the
PostgreSQL buffer cache.

https://www.postgresql.or
g/docs/devel/pgprewarm.

html

pgrowlocks It provides a function to
show row locking

information for a specified
table.

https://www.postgresql.or
g/docs/devel/pgrowlocks.

html

pgstattuple It provides various
functions to obtain

tuple-level statistics.

https://www.postgresql.or
g/docs/devel/pgstattuple.

html

pg_waldump Display a human-readable
rendering of the

write-ahead log of a
PostgreSQL database

cluster.

https://www.postgresql.or
g/docs/devel/pgwaldump.

html

https://www.postgresql.org/docs/devel/app-pgdump.html
https://www.postgresql.org/docs/devel/app-pgdump.html
https://www.postgresql.org/docs/devel/app-pgdump.html
https://www.postgresql.org/docs/devel/app-psql.html
https://www.postgresql.org/docs/devel/app-psql.html
https://www.postgresql.org/docs/devel/app-psql.html
https://www.postgresql.org/docs/devel/app-pg-ctl.html
https://www.postgresql.org/docs/devel/app-pg-ctl.html
https://www.postgresql.org/docs/devel/app-pg-ctl.html
https://www.postgresql.org/docs/devel/app-initdb.html
https://www.postgresql.org/docs/devel/app-initdb.html
https://www.postgresql.org/docs/devel/app-initdb.html
https://www.postgresql.org/docs/devel/pgstatstatements.html
https://www.postgresql.org/docs/devel/pgstatstatements.html
https://www.postgresql.org/docs/devel/pgstatstatements.html
https://www.postgresql.org/docs/devel/pgbuffercache.html
https://www.postgresql.org/docs/devel/pgbuffercache.html
https://www.postgresql.org/docs/devel/pgbuffercache.html
https://www.postgresql.org/docs/devel/pgprewarm.html
https://www.postgresql.org/docs/devel/pgprewarm.html
https://www.postgresql.org/docs/devel/pgprewarm.html
https://www.postgresql.org/docs/devel/pgrowlocks.html
https://www.postgresql.org/docs/devel/pgrowlocks.html
https://www.postgresql.org/docs/devel/pgrowlocks.html
https://www.postgresql.org/docs/devel/pgstattuple.html
https://www.postgresql.org/docs/devel/pgstattuple.html
https://www.postgresql.org/docs/devel/pgstattuple.html
https://www.postgresql.org/docs/devel/pgwaldump.html
https://www.postgresql.org/docs/devel/pgwaldump.html
https://www.postgresql.org/docs/devel/pgwaldump.html

pg_basebackup Takes a base backup of a
PostgreSQL cluster.

https://www.postgresql.or
g/docs/devel/app-pgbase

backup.html

● Refactor the test code

Among the existing tests, I will find the part that is being tested repeatedly and remove
it. If I can improve test code performance, I will improve it. I will focus on reducing the
test execution time through refactoring. Also, I will check that all tests work without
errors in the PostgreSQL Build-farm.

● Add test codes reflecting bug reports

When creating or modifying a test code, search the mailing list for related parts and add
them if there is a part to be tested.

● Add function to Perl PostgreSQL module

https://www.postgresql.org/docs/devel/app-pgbasebackup.html
https://www.postgresql.org/docs/devel/app-pgbasebackup.html
https://www.postgresql.org/docs/devel/app-pgbasebackup.html
https://buildfarm.postgresql.org/index.html

If Cluster.pm, RecursiveCopy.pm, SimpleTee.pm, and Utils.pm needs necessary functions,
I will create or modify submodules.

● Documentation

As I write the test, I’ll learn a lot of new things. So, I will write down the new facts and
contents in the document, writing a test code. Plus I can find missing content in the
document.

6. Schedule

● May 20

- GSoC announcement.

● May 20 - June 12 (3 weeks)

- Get to know the team better.

- Ask something to write the correct test code.

- Start discussing how to write correct test codes.

- Read the documents of to-be-tested modules and learn about the functions I
don’t know.

- Read the already written test code and see how it is written.

● June 13 - June 27 (2 weeks)

- Coding officially starts.

- Research the module to be tested in detail.

- Write a test code for pg_dump, psql.

● June 27 - July 11 (2 weeks)

- Write a test code for pg_ctl, pg_initdb.

- Write documents if there are to add.

● June 11 - July 25 (2 weeks)

- Write a test code for pg_stat_statments.

- Review the test.

- Refactor the test code, and write documents if there are to add.

● July 25 - July 29

- First evaluation between mentors and students.

● August 1 - August 15 (2 weeks)

- Write a test code for pg_buffercache, pg_prewarm.

- Look for improvements in existing test codes.

● August 15 - August 29 (2 weeks)

- Add additional tests to be added by referring to documents and mailing
lists.

- Write a test code for pgrowlocks, pgstattuple.

- Remove unnecessary or overlapping parts.

● August 29 - September 12 (2 weeks)

- Write a test code for pg_waldump, pg_basebackup.

- Review the test.

- Refactor the test code, and write documents if there are to add.

● September 12 - September 19

- Submit code and final evaluation.

