GSoC 2022 PostgreSQL Project Proposal

Improve PostgreSQL Regression Test Coverage

1. Basic Information

e Name: DongWook Lee
o Email: sh95119@gmail.com
e Location: Seoul, South Korea (UTC+ 09:00)

e LinkedIn: https://www.linkedin.com/in/michael--lee96/

e Tech Blog: https://dongwooklee96.github.io/

o Github: https://github.com/dongwooklee96

e Available time: (6 pm - 12 pm)

2. About me

I'm DongWook Lee, a 27-years-old who is interested in database management systems.
It's been a year since I graduated in computer science. I have been interested in
databases since | was a student, and these interests remain the same today. [was
interested in database internal, but now I'm focusing more on the aspects that I use well.

I'm currently working at CRScube which deals with clinical management as a web
application developer. I usually use Flask to develop the backend, and sometimes use
React.js to make the front-end and I often use PostgreSQL and MariaDB to store data. |
prefer PostgreSQL because that has various extensions and communities to solve
problems.

I'm familiar with C, Python, and Java and I've learned even Perl, but I'm not that used to
it and forgot a lot. However I think Python and Pearl have a lot in common (internal
philosophy is quite different.), and I can get accustomed to them quickly. and also I'm
used to working in a Linux environment and I can use tools like Vim, GDB, strace, perf.

Over the past year, I've had almost constant time off work, therefore I can participate in
the project steadily.

mailto:sh95119@gmail.com
https://www.linkedin.com/in/michael--lee96/
https://dongwooklee96.github.io/
https://github.com/dongwooklee96

after work, I usually read books or write technical blogs in my free time. If I participate
in GSoC and get used to writing test codes I think it will be my new hobby. And it would
be a pleasure to add test codes written by others or to review the test codes written by
others.

3. Why this project is important to me

[had a lot of interest in databases before, and I also wanted to contribute to open-source
projects. Therefore, I tried to contribute and contributed several times.

PostgreSQL - Add some basic regression tests for pg_freespacemap
PostgreSQL - Improve references to term “FSM” in pageinspect and
pgfreespacemap

PostgreSQL - pg_stat_statements: Remove unnecessary call to GetUserld()
PostgreSQL - Add link from pg_dump -encoding to supported encodings
PostgreSQL - Add more TAP tests for pg_ dump options with range checks
Arcus - ENHANCE: optimize do_item_replace()

But what I could only contribute to was so basic or simple things. So, I applied to GSoC
2022 to have the ability to contribute one step further and it’s very interesting to have a
lot of colleagues with common interests. In addition, working with a mentor who can
help me is very good.

Writing test code is like understanding the internal logic of the application. It’s very
important to me because [want to study PostgreSQL’s internal movements deeply.

Many functions are newly developed and modified, So I want to make PostgreSQL a
more stable DBMS by creating a test code. Furthermore, [hope to help many people
using PostgreSQL.

https://github.com/postgres/postgres/commit/a1bc4d3590b1f620485c3ec5290dc628e62476f8
https://github.com/postgres/postgres/commit/7687ca996e558d95e68d2d0d70fed22a6317ba78
https://github.com/postgres/postgres/commit/7687ca996e558d95e68d2d0d70fed22a6317ba78
https://github.com/postgres/postgres/commit/667726fbe50f21d7d3ce5d5c5949a45c2496b60f
https://github.com/postgres/postgres/commit/64fe120b57c6a928a527880476e9882b9bf7ae8a
https://github.com/postgres/postgres/commit/64725728e790b76c97984b1029d9ffe90bcb2ec4
https://github.com/naver/arcus-memcached/pull/508

4. Project Abstract

Directory ¢ Line Coverage | Functions¢ |
Giis — 2000 0000 |

contrib/py_f

53182004

30/33

19719

jp_and_sjis

21/23
3157411
80/100
89/111
195 /230
22/22
88/101

£w_and_bigs

77
717

kr_and_mic

en_and mic

102/118
1217129
28/30

ot I

PostgreSQL is a very actively developed project and there are so many existing codes
and so many new ones are added. I think there are still many functions that have not
been tested. Test codes that various cases increase development stability and other
developers can make changes safely. I will write a test code for the module that has not
been tested yet.

5. Features To be implemented

These are ideas that I want to do on a project.

e Write test codes for untested parts

When I checked the current test coverage, many modules are not covered. Therefore,
first of all, [will write a test focusing on the parts that are not covered.

First, I will write a test for a module that has not been tested at all. When I checked the
coverage, many extensions remained untested. So I will focus on writing test codes to

increase test coverage.

e List of modules to test

I made a list of modules to be tested based on modules with personal interest and less

test coverage.

database cluster

module description document
pg_dump extract a PostgreSQL https://www.postgresqgl.or
database into a script file | g/docs/devel/app-pgdum
or other archive file p.html
psql PostgreSQL interactive https://www.postgresgl.or
terminal g/docs/devel/app-psql.ht
ml
pg_ctl initialize, start, stop, or https://www.postgresgl.or
control a PostgreSQL docs/devel/app-pg-ctl.h
server tml
initdb create a new PostgreSQL | https://www.postgresgl.or

g/docs/devel/app-initdb.h
tml

pg_stat_statments

It’s for tracking planning
and execution statistics of
all SQL statements
executed by a server.

https://www.postgresqgl.or

g/docs/devel /pgstatstate

ments.html

pg_buffercache

It’s for examining what'’s
happening in the shared
buffer cache in real-time.

https://www.postgresqgl.or
g/docs/devel /pgbuffercac

he.html

pg_prewarm

[t provides a convenient
way to load realation data
into either the operating
system buffer cache or the
PostgreSQL buffer cache.

https://www.postgresqal.or

g/docs/devel /pgprewarm.

html

rendering of the
write-ahead log of a
PostgreSQL database
cluster.

pgrowlocks It provides a function to | https://www.postgresqgl.or
show row locking g/docs/devel /pgrowlocks.

information for a specified html

table.

pgstattuple [t provides various https://www.postgresqgl.or
functions to obtain g/docs/devel/pgstattuple.

tuple-level statistics. html
pg_waldump Display a human-readable | https://www.postgresgl.or

g/docs/devel /pgwaldump.
html

https://www.postgresql.org/docs/devel/app-pgdump.html
https://www.postgresql.org/docs/devel/app-pgdump.html
https://www.postgresql.org/docs/devel/app-pgdump.html
https://www.postgresql.org/docs/devel/app-psql.html
https://www.postgresql.org/docs/devel/app-psql.html
https://www.postgresql.org/docs/devel/app-psql.html
https://www.postgresql.org/docs/devel/app-pg-ctl.html
https://www.postgresql.org/docs/devel/app-pg-ctl.html
https://www.postgresql.org/docs/devel/app-pg-ctl.html
https://www.postgresql.org/docs/devel/app-initdb.html
https://www.postgresql.org/docs/devel/app-initdb.html
https://www.postgresql.org/docs/devel/app-initdb.html
https://www.postgresql.org/docs/devel/pgstatstatements.html
https://www.postgresql.org/docs/devel/pgstatstatements.html
https://www.postgresql.org/docs/devel/pgstatstatements.html
https://www.postgresql.org/docs/devel/pgbuffercache.html
https://www.postgresql.org/docs/devel/pgbuffercache.html
https://www.postgresql.org/docs/devel/pgbuffercache.html
https://www.postgresql.org/docs/devel/pgprewarm.html
https://www.postgresql.org/docs/devel/pgprewarm.html
https://www.postgresql.org/docs/devel/pgprewarm.html
https://www.postgresql.org/docs/devel/pgrowlocks.html
https://www.postgresql.org/docs/devel/pgrowlocks.html
https://www.postgresql.org/docs/devel/pgrowlocks.html
https://www.postgresql.org/docs/devel/pgstattuple.html
https://www.postgresql.org/docs/devel/pgstattuple.html
https://www.postgresql.org/docs/devel/pgstattuple.html
https://www.postgresql.org/docs/devel/pgwaldump.html
https://www.postgresql.org/docs/devel/pgwaldump.html
https://www.postgresql.org/docs/devel/pgwaldump.html

pg_basebackup Takes a base backup of a

PostgreSQL cluster.

https://www.postgresqgl.or
g/docs/devel/app-pgbase
backup.html

e Refactor the test code

Eéﬂ;]reSQL" BuildFarm

[Home JREET [Members | Register | [citub I Emalists |
PostgreSQL BuildFarm Status

Shown here is the latest status of each farm member for each branch it has reported on in the last 30 days.

Use the farm member link for history of that member on the relevant branch.

@ - cassert| % = debug ¥ = gssapi| B =kibs |3 = ivm| B = nis & - openss!
% opam | Wopern | %= python| < taptests| = = 1ol | B = thread-satety W = vpath | Ed = xmi

Allas System
caiman Fedora Fedora Linux 37 (Rawhide Prerelease) gec gee version 12.0.1 20220308 (Red Hat 12.0.1-0) (GCG) x86_64

xenodermus | () |Debian Sid clang 6 x86_64

lorikeet Cygwin64/Windows 3.2.0/10 gcc 10.2.0 x86_64

morepork OpenBSD OpenBSD 6.9 clang clang 10.0.1 x64

vulpes fedora 27 gcc 7.3.1 ppcbdle

lapwing [0 |Debian 7.0 goc 4.7.2 i686

conchuela DragonFly BSD DragonFly BSD 6.0 goc goc 8.3 xB6_64

loach FreeBSD FreeBSD 12.2 clang clang 10.0.1 x86_64

guaibasaurus | Debian Debian GNU/Linux 10 (buster) goc version 8.3.0 (Debian 8.3.0-8) xB6_64
curculio OpenBSD 5.9 goo 4.2.1 x86_64

sidewinder NetBSD NetBSD 9.2 goc clang 12.0.1 x86_64

butterflyfish Photon 2.0 Gee 6.3.0 x86_64

myna Photon 3.0 Gee 6.3.0 x86_64

clam RHEL 7.1 IBM Advance Toolchain GCC 5.2.1 ({Advance-Toolchain-at9.0) ppc6dle

status
00:21 ago OK [8cd7627] Config
02:21 ago OK [Bcd7627] Config
02:27 ago OK [Bcd7627] Contig
02:36 ago OK [Bcd7627] Config
02:36 ago OK [Bcd7627] Contig
02:41 ago OK [8cd7627) Config
02:46 ago OK [8cd7627] Config
02:56 ago OK [8cd7627) Con
03:01 ago OK [8cd7627] Cor
03:06 ago OK [8cd7627] Cos
03:16 ago OK [8cd7627] Cos
03:21 ago OK [8cd7627] Cos
03:21 ago OK [8cd7627] Contig
03:21 ago OK [8ed7627) Config

Fiags
@me oS wh-E
@ #we(302 2 WiheFr1E VA
@&SWE VI

@02 WisE=IE K

@ %wot 8 Wi=E Kl

@ %m0 S Wi E=IE K
@ %wol3C3 & Wi E VIR
@ w30 2 Wi FrIE I
@gwely 3 WiIE T
@% 2 WisSrE i
@#mel3T2 8% WiAr1E I
@ gwely & eI E T
@gwely & eI E T
@gwely S WihIE T

Among the existing tests, [will find the part that is being tested repeatedly and remove
it. If [can improve test code performance, [will improve it. I will focus on reducing the
test execution time through refactoring. Also, I will check that all tests work without

errors in the PostgreSQL Build-farm.

e Add test codes reflecting bug reports

When creating or modifying a test code, search the mailing list for related parts and add

them if there is a part to be tested.

e Add function to Perl PostgreSQL module

Cluster.pm
RecursiveCopy.pm

SimpleTee.pm
Utils.pm

https://www.postgresql.org/docs/devel/app-pgbasebackup.html
https://www.postgresql.org/docs/devel/app-pgbasebackup.html
https://www.postgresql.org/docs/devel/app-pgbasebackup.html
https://buildfarm.postgresql.org/index.html

If Cluster.pm, RecursiveCopy.pm, SimpleTee.pm, and Utils.pm needs necessary functions,
[will create or modify submodules.

e Documentation

Development Versions: devel

64.3. B-Tree Support Functions
Prev Up Chapter 64. B-Tree Indexes

64.3. B-Tree Support Functions

As shown in Table 38.9, btree defines one required and four optional support functions. The five user-defined methods are:

of a collatable data type, the appropriate collation OID will be passed to the cor

sortsupport

Optionally, a btree operator family may provide sort support function(s), registered under support function number 2. These functions allow imple
amore efficient way than naively calling the comparison support function. The APls involved in this are defined in src/include/utils/sortsup]

in_range

Optionally, a bt
extend the semantics of the op
Section 4.2.8). Fundamentally, the ex

L P tion(s),
thatit can support window cl
ation provided is how to add or subtract an

An in_range function must have the signature

e(val typel, base typel, offset type2, sub bool, less bool)
bool

val and base must be of the same type, which is one of the types supported by the operator family (i., a type for which it provides an ordering). |

As I write the test, I'll learn a lot of new things. So, I will write down the new facts and
contents in the document, writing a test code. Plus I can find missing content in the
document.

6. Schedule

e May 20
- GSoC announcement.
e May 20 - June 12 (3 weeks)
- Get to know the team better.
- Ask something to write the correct test code.
- Start discussing how to write correct test codes.

- Read the documents of to-be-tested modules and learn about the functions I
don’t know.

- Read the already written test code and see how it is written.

e June 13 - June 27 (2 weeks)
- Coding officially starts.
- Research the module to be tested in detail.

- Write a test code for pg_dump, psql.
e June 27 - July 11 (2 weeks)

- Write a test code for pg_ctl, pg_initdb.
- Write documents if there are to add.
e June 11 - July 25 (2 weeks)
- Write a test code for pg_stat_statments.

- Review the test.

- Refactor the test code, and write documents if there are to add.
e July 25 - July 29

- First evaluation between mentors and students.
e August 1 - August 15 (2 weeks)

- Write a test code for pg_buffercache, pg_prewarm.

- Look for improvements in existing test codes.
e August 15 - August 29 (2 weeks)

- Add additional tests to be added by referring to documents and mailing
lists.

- Write a test code for pgrowlocks, pgstattuple.

- Remove unnecessary or overlapping parts.

e August 29 - September 12 (2 weeks)
- Write a test code for pg_waldump, pg_basebackup.
- Review the test.

- Refactor the test code, and write documents if there are to add.

e September 12 - September 19

- Submit code and final evaluation.

